Synthesis and structural investigation of $\left\{\mathrm{CpPr}\left[\mathrm{CH}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}\right]\left[\mu-\mathrm{CH}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}\right]_{2}\right.$

Furen Shen ${ }^{\text {a.* }}$, Weihua Zhang ${ }^{\text {a }}$, Jiping Hu ${ }^{\text {a }}$, Shaowu Wang ${ }^{\text {b }}$, Xiaoying Huang ${ }^{\text {c }}$
${ }^{*}$ Instime of Organic Chemisry. Anhui Normal Universiry, Wuhu, Anhai 241000, Perphe's Republic of Chime
${ }^{6}$ Coordinatiom Chemistry Institute. State Key Iaboratory of Corrdination Chemistrs, Namiing University. Naming $21(0) 93$. Peophe"s Republic of China
"Fuifan Instituce of Rescarch om the Structure of Matter. Fuchou. Fiyian 350002. Perphe's Repubhic of China

Received 25 Ortober 1995; in revised form 3 April 1990

Abstract

The reaction of a $1: 2$ molar ratio of $\mathrm{Cp}_{3} \mathrm{Pr}$ with diethyl malonate in n-hexane results in the formation of $\left\{\mathrm{CpPr}^{2} \mathrm{CH}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{I}^{2} \mu\right.$ $\left.\mathrm{CH}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}\right]_{2}$. X ray analysis demonstrates that the complex is a dimer, the two praseodymiam atoms are bridged by two oxygen atoms of two independent diethyl malonate ligands. The bridging ligands coordinate with the praseodymium atom in a tridentate mode. the other two diethyl malonate ligands coordinate with praseodymium in a bidentate mode. The complex crystallizes in the monoclinic system. spuce group P2 $/ a$ with unit cell constants $a=9.675(4), b=18.134(3), c$ a $12.795(3) \hat{A}, ~ \beta=92.53(3)^{\circ}, D_{i}=1.55 \mathrm{~g} \mathrm{~cm}$. $M_{r}=1048.65, V=2243(2) \AA^{3}$, for $\%=2, \mu=22.01 \mathrm{~cm} '^{\prime}$ and $r(000)=1056$. The structure was solved by heavy atom methods (bikbif) and full-matrix least-squares refinement to the final $R=0.040, R_{w}=0.048$.

Recyrords: Praseodymium: Cyclopentadienyl: Diethyl malonate: Crystal structure

1. Imroduction

In the past lew decades, the chemisitry of orgamolinnthanide complexes has becone one of the moss active fiedds of organometallic chemistry. With respeet to organolanthanide complexes involving bolh cyclopentadienyl and β-diketonato chelate ligands. several works have focused on thermal stability and mass spectra [1-4]. In addition, only two organolanthanide complexes involving bolh cyclopentadienyl and diethyl malonate have been prepared [1]. Moreover, up to now only a tew structures of this type of complex ate known [5-8], and neither the synthesis nor the structural characterization of a diethyl malonate chelating ligund of the early organolanthanide complexes has been reported. For the above reasons, we have synthesized and carried out structural investigations of the complex $(\mathrm{CpPr}[\mathrm{CH}-$ $\left.\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}\right]\left[\mu-\mathrm{CH}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}\right]_{2}$.

[^0]
2. Experimental

All reatcions and operations were cantied out using Schlenk technigues under an amosphere of ultrapure argon. THF and n-hexane were dried over solium and distilled under argon from sodium bemaphenone ketyl immedialely before use. $\mathrm{Cp}_{3} \mathrm{Pr}$ was prepared by the published procedure [9]. Diechyl malonate wats dried over anhydrous MgSO_{4} and freshly distilled under argon before use. Elemental andysis data were obtained with a Yanaco M'T-2 analyzer, the analysis for Pr was obtained by the published methol [10]. IR spectra were recorded on a Perkin-Elmer 98.3 (G) spectrometer. MS signals were recorded on a ZAS-IIS MS spectrometer. Melting points were determined in seated :argon-filled capillarices without correction.

> 2.I. Preparation of $\left\{\mathrm{CPPr}_{\mathrm{p}} / \mathrm{CHICOOC}, H_{3}\right)_{2} / / \mu$ $\left.\mathrm{CH}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2} /\right\}_{2}$

A mixture of $\mathrm{Cp}_{3} \mathrm{Pr}$ and diethyl matonate in a molar ratio of $1: 2$ was stirred in n-hexame at room temperature for 2 days. Then n-hexane was removed in vacuum from the reaction mixture. The resulting solid was

Table I
MS signals

Compound	T $\left({ }^{\circ} \mathrm{C}\right)$	Signals
$\mathrm{CFPrL}_{\text {P }}$	$\begin{array}{r} 150 \\ >200 \end{array}$	$524\left(\mathrm{CpPrL}_{2}{ }^{+}\right), 430\left(\mathrm{Cp}_{2} \mathrm{PrL}^{+}\right), 365\left(\mathrm{CpPrL}^{*}\right), 271\left(\mathrm{Cp}_{2} \mathrm{Pr}^{+}\right), 206\left(\mathrm{CpPr}^{-}\right) .141\left(\mathrm{Pr}^{+}\right), 66\left(\mathrm{HCp}^{+}\right)$ $618\left(\mathrm{PrL}_{3}^{*}\right), 524\left(\mathrm{CpPrL}_{2}^{-}\right), 459\left(\mathrm{PrL}_{2}^{+}\right), 430\left(\mathrm{Cp}_{2} \mathrm{PrL}^{+}\right), 365\left(\mathrm{CpPrL}^{+}\right), 336\left(\mathrm{Cp}_{3} \mathrm{Pr}^{+}\right), 271\left(\mathrm{Cp}_{2} \mathrm{Pr}^{+}\right) 206\left(\mathrm{CpPr}^{*}\right)$. $141\left(\mathrm{Pr}^{+}\right), 66\left(\mathrm{HCp}^{+}\right)$

L indicates diethyl malonate.
recrystallized twice from THF/n-hexane. Pale yellow crystals (yield 34.7% based on $\mathrm{Cp}_{3} \mathrm{Pr}$) were obtained upon cooling the solution at $-10^{\circ} \mathrm{C}$ for several days. Anal. Found: Pr. 26.76: C. 42.98: H. 5.35. Calc: Pr. 26.87; C. 43.52; H, 5.19\%. IR: 3080, 1750, 1566, 1548. 1530, 1440, 1175, 1080, 1000, 780, $250 \mathrm{~cm}^{-1}$. Melting point $160^{\circ} \mathrm{C}$ (comp.). The complex is unstable to air and moisture both in solution and as a solid. The mass spectra signals of the title complex are listed in Table 1.

The mass spectra of the title compound at two different temperatures show that the compound is unstable while being heated and partially disproportionates into $\mathrm{Cp}_{2} \mathrm{PrL}$ and PrL_{3}. $\mathrm{Cp}, \mathrm{PrL}$ can disproportionate into $\mathrm{Cp}_{3} \mathrm{Pr}$ and PrL_{3}. The reation may be described as follows:
$2 \mathrm{CpPrL}_{2} \rightleftharpoons \mathrm{Cp}_{2} \mathrm{PrL}+\mathrm{PrL}_{3}$
$3 \mathrm{Cp}_{2} \mathrm{PrL} \Leftrightarrow 2 \mathrm{Cp}_{3} \mathrm{Pr}^{-}+\mathrm{Prl}_{2}$

2.2. X -ray crystallography of $\left\{\mathrm{CpPr}\left(\mathrm{CH}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}\right)\right.$ $\left.1 \mu-\mathrm{CH}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2} /\right\}_{2}$

A single crystal of the title complex with dimensions $0.38 \times 0.20 \times 0.16 \mathrm{~mm}^{3}$ was selected and sealed in a thin-walled glass capillary under argon and used in the data collection. The intensity data and unit cell parameters were collected on an Enraf-Nonius CAD4 diffactometer with Mo $\mathrm{K} \alpha$ (graphite monochromated. $\lambda=$ $0.71069 \AA$) in the range $2 \theta<50^{\circ}$. Th data were collected at a temperature of 296 K using the $\omega / 2 \theta$ scanning technique. The scan rate is less than $5.49^{\circ} \mathrm{min}^{-1}$. A total of 4358 unique reflections were collected. 2899 reflections with $I>3 \sigma\left(I_{0}\right)$ of 4110 independent reflections were observed and used in the structure determination.

The structure was solved by the heavy atom method. The positions of all non-hydrogen atoms were revealed

Tible 2
Atomic coordinatev and isatropic ohermal parametefs

Atom	1	\checkmark	\because	$B_{s, 1}\left(\lambda^{2}\right)$	
P_{f}	$0.07641 \times 4)$	$0 .(14587(2)$	0.144,13(3)	$3 \mathrm{Sk}(2)$	
011	0.1927(5)	$=0$ (KWd?	$0.18 .17(4)$		
OH^{2}	0.3714(5)	0.0710)	0 20.6ka)	+921	
O3)	$0.3201(6)$	$=0.159731$	$0.250 \times(5)$	7113	
O(4)	0.472 (6)	0009.4 31	$0.35 .3(\mathrm{cal}$	6.0.3)	
O(5)	$=0.0779(5)$	$=0.011443$	$0.2647(4)$	S.H.3)	
0×1	$=0.109 \times 4)$	$=0.0220221$	$0.0461(3)$	$3 \mathrm{X}(2)$	
(07)	-0.2497(7)	$=0.0079(4)$	$0.3446(5)$	8.648	
O(8)	-0.2460×5	-0.0792(3)	-0,0194(4)	S(M2)	
(11)	-0.1313(9)	$0.1487(5)$	$0.1703(\mathrm{~K})$	6.545)	
C(2)	-0.0995(9)	$0.1562(4)$	$0.067 \mathrm{~s}(\mathrm{~s})$	$6.1(5)$	
(c)	0.03011	$0.1860(5)$	$0.06+511$	7.46)	
(4)	$0.079(1)$	$0.1483(5)$	$0.167(1)$	$8.006)$	
C(s)	-0.032(1)	$0.1743(5)$	$0.2316(9)$	8.3 (6)	
(76)	11.3882(7)	-0.0.40)(4)	0. $29.37(6)$	S.1(d)	
C(7)	0. $2906+77$	-0.0891(4)	0.230s(6)	+ 5 (3)	
C(k)	0,3706(8)	$0.03 .43(4)$	0.2968(5)	$4.5(3)$	
(9)		-0.3140(5)	$0.215(1)$	\times ¢ $5(6)$	
C(10)	1). $60.3(1)$	(0) 14795	$0.3631(8)$	9.60)	
(111) (91)	$0.12 \mathrm{~K}(2)$	$-0.2272(8)$	0. $29+11$	$1 \\| n$	
(11) (\%13)	0.5829 $-0.262)$ $-0.17)$	nive361	$0433(1)$	12.4(k)	
(113)	$-0.262 .2(7)$ $-0.1893(9)$	-0)0704(1)	0, 166766	$5.1(4)$	
C(1.4) C(15)	$=0.1803(9)$ $-0.2173(7)$ -0.2017	-0.046515	$0.258 .3(6)$	$56(4)$	
C(10)	-0.201(1)	-0,0562(3)	(0,070.3(6)	4.1(3)	
(17)	-0.39211	-0.133.45	-0.0199(${ }^{\text {a }}$	130 790 10	
(18)	-0.01212)	-0.086(1)	0.182(1)	16(1)	
CYiy)	-0.52771	-0.10321(6)	-0.02\% 11	$11.7(8)$	
Cent ${ }^{\text {a }}$	-0.02785	0.1727	0.1400		

[^1]

Fig. 1. The structure of $\left(\mathrm{CpPr}\left[\mathrm{CH}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}\right][\mu\right.$ $\mathrm{CH}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{ll}_{2}$.
by successive Fourier synthesis. Hydrogen atoms were introduced in calculated positions. All positions and thermal parameters for non-hydrogen atoms were refined anisotropically with full-matrix least-squares methods and converged to final $R=0.040, R_{\mathrm{w}}=0.048$ $\left[w=1 / \sigma^{2}(F), s=1.13\right.$ and $\left.(\Delta / \sigma)_{\max }=0.03\right]$; the $\mathrm{fi}-$ nal difference Fourier map of the complex showed no peak higher than 0.75 e \AA^{-3} or less than $-0.59 \mathrm{e}^{\AA^{-3}}$. All calculations were performed on a Micro Vaxll computer with the TEXSAN V2.I package.

3. Results and discussion

Atomic coordinates and isorropic thermal parameters, selected bond distances and bond angles of all non-hydrogen atoms are listed in Tables $2-4$ respectively. [igs. I and 2 give the structure of the molecule and the whit cell package of the molecuke respectively.

Table 3
Selected trond distames (A)

Pr-O(2)	2.392(5)	O(6)-C(15)	$1.204(8)$
$\mathrm{Pr}-\mathrm{O}(1)$	2.400(5)	O(7)-C(14)	1.33(1)
$\mathrm{Pr}-\mathrm{O}(5)$	2.42665)	O(7) - C(16)	1.52(2)
Pr -O(6)	$2.478(4)$	O(8)-C(15)	$1.360(8)$
Pr Of(6a)	$2.507(4)$	O(8) $\mathrm{C}(17)$	1.464(9)
$\mathrm{Pr} \mathrm{O}(\mathrm{Sa})$	$2.712(5)$	C(1)-C(2)	1.37 (1)
Pr-C(S)	2.770)(9)	C(1)-C(5)	1.37 (1)
Pr-C(1)	$2.772(8)$	$\mathrm{C}(2) \cdot \mathrm{C}(3)$	$1.37(1)$
$\mathrm{Pr}-\mathrm{C}(2)$	$2.777(7)$	C(3) $\mathrm{C}(4)$	$1.41 \times 1)$
$\mathrm{Pr}-\mathrm{C}(4)$	$2.778(8)$	C(4)-C(5)	$1.38(1)$
$\mathrm{Pr}-\mathrm{C}(3)$	$2.781(8)$	$\mathrm{C}(6) \mathrm{C}(1)$	$1.3611)$
O(1) C(7)	1.25.3(8)	(16) C(7)	1.39(1)
$\mathrm{O}(2)-\mathrm{C}(\mathrm{8})$	$1.249(8)$	C(9) C(1)	1.43(2)
O(3) C(7)	$1.353(8)$	$\mathrm{C}(10)-\mathrm{C}(12)$	1.50(1)
O(3)-C(9)	1.44(1)	C(13)-C(15)	1.35(1)
O(4) C(C)	$1.355(8)$	C(13)-C(14)	1.41 (1)
O(4) $\mathrm{C}(10)$	1.43(1)	$\mathrm{C}(16) \ldots \mathrm{C}(18)$	1.32(2)
O(5) C(14)	1.254(9)	C(17)-C(19)	1.30(1)
Pr-Cent ${ }^{\text {a }}$	$2.511(5)$		

[^2]Fig. 2 shows that there are two molecules in each unit cell.

X-ray structural analysis indicates that the title complex is a dimer and the molecule has a crystallographic symmetric center. From Fig. 1, we can see that the diethyl malonate coordinates with the praseodymium ion in two ways, one with the center ion in bidentate mode, the other with the ion in tridentate mode in a bridging fashion. Each praseodymium ion is surrounded by six oxygen atoms of the diethyl malonate ligands and one cyclopentadienyl ligand coordinated with the center ion in η^{5}-fashion. So, the coordination number of each praseodymium ion is 9 and the geometry around the praseodymium ion can be described as a pentagonal bipyramid, the atoms $O(6), O(2), O(5), O(6 a)$ and $O(8 a)$ (the plane formed by which has mean deviation only $0.0551 \AA$) situated at equatorial positions and the center of the cyclopentadienyl ring and the atom $O(1)$ situated at axial positions.

It was reported that a β-diketo ligand is bonded to the rare earth ions in the bidentate mode $\mathrm{Ln}^{\prime} \mathrm{C}_{\mathrm{C}} \mathrm{C}$ [5-8]. In the present structure each rare earth ion is coordinated to one β-diketo ligand in the bidentate mode $\mathrm{Pr}_{\mathrm{O}_{2}}^{\sim}-\mathrm{C}_{8}^{\prime}-\mathrm{C}_{8}$ and to two β-diketo ligands in a mixaure coordinating way
 chelating mode and bridging mode). Based on the ways in which these atoms coordinate the center

Fig 2. The unit cell package of $\left(\mathrm{CpPr}\left[\mathrm{CH}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2} \| \mu\right.\right.$ $\left.\mathrm{CH}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}\right]_{2}$.
praseodymium atom, the six oxygen atoms can be classified into three types, $O(6)$ and $O(6 a)$ form the first. bridging type. $O(5), O(1)$ and $O(2)$ form the second chelating type, and $O(8 a)$ is the third, internal type.

From rable 3, the bond distances $\mathrm{Pr}-\mathrm{O}(5)$ and $\mathrm{Pr}-$ $O(6)$ are $2.426(5)$ and $2.478(4) \AA$ respectively, both much longer than the average bond distances $\mathrm{Pr}-\mathrm{O}$ (1) and $\operatorname{Pr}-\mathrm{O}(2)$ (2.349 \AA). This result may be due to the different coordination modes of the two diethyl mal-
onate ligands and the repulsive interaction of atoms around the two praseodymium ions. The bond distance $\operatorname{Pr}-\mathrm{O}(8 \mathrm{a})$ is $2.712 \AA$, which is much longer than that of any other $\mathrm{Pr}-\mathrm{O}$ bonds in the molecule. This suggests that this internal coordination bond is quite weak.

From Table 3, the distance between the center of the cyclopentadienyl ring and the praseodymium atom is $2.511(5) \AA$, which is almost as long as that observed in $\mathrm{Cp}_{3} \operatorname{Pr}[11]$ (average bond distance $2.507 \AA$ not includ-

Table 4
Selected bond angles (${ }^{\circ}$)

O(2)-Pr-O(1)	71.9(2)	O(5)-Pr-C(3)	122.3(2)
O(2)- $\mathrm{Pr}-\mathrm{O}(5)$	100.4(2)	O(6)- $\mathrm{Pr}-\mathrm{O}(6 a)$	62.8(2)
O(2)- $\mathrm{Pr}-\mathrm{O}(6)$	160.9 (1)	O(6) $-\mathrm{Pr}-\mathrm{O}(8 \mathrm{a})$	111.0011
$\mathrm{O}(2)-\mathrm{Pr}-\mathrm{O}(6 \mathrm{a})$	120.3(2)	O(6) $-\mathrm{Pr}-\mathrm{C}(5)$	111.8(3)
$\mathrm{O}(2)-\mathrm{Pr}-\mathrm{O}(8 \mathrm{Sa}$	74.3(2)	$\mathrm{O}(6)-\mathrm{Pr}-\mathrm{C}(1)$	$83.4(2)$
O(2) $-\operatorname{Pr}-\mathrm{C}(5)$	$82.1(3)$	$\mathrm{O}(6)-\mathrm{Pr}-\mathrm{C}(2)$	76.3(2)
$\mathrm{O}(2)-\mathrm{Pr}-\mathrm{C}(1)$	$110.5(2)$	$0(6)-\operatorname{Pr}-\mathrm{C}(4)$	123.7(2)
$\mathrm{O}(2)=\mathrm{Pr}-\mathrm{C}(2)$	122.2(2)	$\mathrm{O}(6)-\mathrm{Pr}-\mathrm{C}(3)$	99.8 (3)
$\mathrm{O}(2)=\mathrm{Pr}-\mathrm{Cl}(4)$	74.8(2)	O(6a)-Pr--O(8a)	48.3(1)
O(2) $\mathrm{Pr}-\mathrm{Cl} 3)$	99.2(3)	$\mathrm{O}(6 \mathrm{n})-\mathrm{Pr}-\mathrm{C}(5)$	126.43)
$\mathrm{O}(1) \mathrm{Pr}=\mathrm{O}(5)$	78.1(3)	$\mathrm{O}(\mathrm{Ga})-\mathrm{Pr}-\mathrm{C}(1)$	$110.7(2)$
$\mathrm{O}(1)=\mathrm{Pr}=\mathrm{O}(6)$	$89.8(1)$	O(6a)-Pr-C(2)	83.1(2)
$\mathrm{O}(1)-\mathrm{Pr}=\mathrm{O}(6 a)$	88.9(2)	$\mathrm{O}(6 \mathrm{a})-\mathrm{Pr}-\mathrm{C}(4)$	105.5(3)
$O(1)=\operatorname{Pr} O(8, ~)$	87.7(2)	$\mathrm{O}(6)^{\prime} \mathrm{Pr} \mathrm{Pr}-\mathrm{C}(3)$	79.6(3)
O(1) $\mathrm{Pr}-\mathrm{C}(5)$	143.8(3)	$\mathrm{O}(8 \mathrm{a})-\mathrm{Pr}-\mathrm{C}(5)$	109.3(3)
$\mathrm{O}(1)=\mathrm{Pr}-\mathrm{C}(1)$	$153 .(3.3)$	$\mathrm{O}(8 \mathrm{a}) \mathrm{Pr}-\mathrm{C}(1)$	$119.2(2)$
$\mathrm{O}(1)=\mathrm{Pr}-\mathrm{C}(2)$	$160.0 \times 2)$	$\mathrm{O}(8 \mathrm{a}) \mathrm{Pr} \mathrm{C}(2)$	95.5(2)
O(1) $\mathrm{Pr}-\mathrm{C}(4)$	146,52)	$\mathrm{O}(8 \mathrm{a}) \mathrm{Pr}-\mathrm{C}(4)$	80.503)
$\mathrm{O}(1)=\mathrm{Pr}-\mathrm{C}(3)$	159,4.3)	$\mathrm{O}(8 \mathrm{a})=\mathrm{Pr}-\mathrm{C}(3)$	$71.9(2)$
O(5) $=\mathrm{Pr}=\mathrm{O}(6)$	69,8(2)	$\mathrm{C}(5)=\mathrm{Pr}=\mathrm{C}(1)$	2x.6x 3)
O(5) $\mathrm{Pr} \mathrm{Pr}(6 n)$	130.5(2)	C(5) $\mathrm{Pr}=\mathrm{C}(3)$	47.2(3)
O(5) $\mathrm{Pr}=\mathrm{CXNa}^{\text {(}}$	165.73)	($(5) \mathrm{Pr} \mathrm{Cl}(4)$	$2 \mathrm{EP}, \mathrm{s}$ (1)
O(5) Pr C(Cl^{5}	$83 .(x)$	(9) Pr C(3)	+7.6x.3)
O(5) Pr (C(1)	75.11 \%	(Y) Pr C(2)	28,5(2)
O(5) $-\operatorname{Pr} \mathrm{C}(2)$	98.513)	((I) Pr C(i)	47,431
O(3) Pr (4)	111.3:3)	((1) Pr Cra	47.363
$\mathrm{C}(3) \mathrm{Pr} \mathrm{Cl}(\mathrm{d}$	47.42)	C(3)-C(4) Pr	75.9(5)
$\mathrm{C}(2) \mathrm{Pr}-(1)$	28,0,3)	C(1) C(5)-C(4)	108(1)
$\mathrm{C}(4)-\mathrm{Pr}-\mathrm{C}(3)$	29, 1 , 3)	C(1) $\mathrm{C}(5)-\mathrm{Pr}$	75,8(5)
C(7) $\mathrm{O}(1)-\mathrm{Pr}$	135.23(4)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Pr}$	$75.9(5)$
$\mathrm{C}(\mathrm{k})-\mathrm{O} 21-\mathrm{Pr}$	134.4(4)	$C(8)-C(6)-C(7)$	122.97)
C(14)-C(5)- Pf	$136.815)$	O(1)-C(7)-0 0 (3)	119.1(6)
O(1) C(7) C(6)	$136.516)$	O(3)-C(7)-(76)	114.40)
C(15) O(0) Pp	135,1(4)	$\mathrm{O}(2)$ - $\mathrm{CX}(\mathrm{B})-\mathrm{CX}(4)$	118.4(0)
	107.3(4)	$\mathrm{O}(2)-\mathrm{CY}(\mathrm{S}) \mathrm{C}(6)$	128.47)
($(15)-G(8)=(117)$	122.961	(715) (C13) ((14)	122.3(7)
C(15a)=C(A) - Pr	94,3(4)	C(3)-(4)-(4)	10711
C(17a)-O(8a)-Pr	1.36.3(3)	O(5)-C(14)-O(7)	120.1(8)
C(2) C(1) C(5)	108(1)	O(5)-C(14)-C(13)	127.47)
C(3)-C(1)-Pp	- 9 9(5)	O(7) C(14) C(13)	112.471
(15) C(1) Pf	75.6(5)	O(6) C(15) C(13)	128.2(7)
Cril cye Col	10s.x(9)	O(6) C(15) O(8)	108.961
(11) (12) Pr	75.315	C(13) $\mathrm{C}(15) \mathrm{O}(3)$	$123.96)$
(73)-C(2) Pr	75.9(5)	C(5)-C(4)-C(3)	107,3(9)
(12)-(7) Pr	75.55	C(5)-C(4) Pr	75.3(5)
(91) C(3) Pr	$75.3(5)$	O(4) C(8) C(61	113.1(7)
O(2)-Pr Ceme	96.47	(1) $\mathrm{Pr}-\mathrm{Cm}$	167.4
O6) Pr Cent	100.1	O(6)-Pr-Cent	101.34
Oron Pr-Cent	101.35	O(8a)-Pr-Cemt	93.7
Pr-O(6)-Pr(a)	117.32)	Pr-O(6al-Pral	117.2(2)

[^3]ing the bond formed by the bridging cyclopentadienyl) and much shorter than that in $\mathrm{Cp}(\mathrm{COT}) \mathrm{Pr}_{2}(\mathrm{THF})_{2}$ [12] (COT $=$ cyclooctatetraene dianion $\mathrm{C}_{8} \mathrm{H}_{8}^{2-}$) (2.805(5) \AA). This result may presumably be due to the existence of the strong ligand of COT (stronger than diethyl malonate) weakening the $\mathrm{Pr}-\mathrm{Cp}$ bond.

From Table 4, the bond angle $\mathrm{O}(1)-\mathrm{Pr}-\mathrm{O}(2)$ is 71.9°, which is 1.3° smaller than that of $\mathrm{O}(1)-\mathrm{Ho}-\mathrm{O}(2)$ (73.2 ${ }^{\circ}$) in $\mathrm{CP}_{2} \mathrm{Ho}\left(\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{COCHCOCF}_{3}(\mathrm{THF})\right.$) and 6.1° smaller than that of $\mathrm{O}(1)-\mathrm{Yb}-\mathrm{O}(2)\left(78.0^{\circ}\right)$ in $\mathrm{Cp}_{2} \mathrm{Yb}\left(\mathrm{CH}_{3} \mathrm{COCHCOCF}_{3}\right)$. These results may primarily be due to different geometric configurations around the center lanthanide ions. In a ytterbium complex, the geometry can be described as tetrahedral around the center ion. In a holmium complex, the geometry around the center ion has been described as a trigonal bipyramid. In contrast, in the title complex the geometry can be described as a pentagonal bipyramid.

Acknowledgements

We are grateful to Mr. Baohui Du for his assistance.

References

[1] H. Ma and Z. Ye, in Xu Guangxian and Xiao Jimei (eds.), New Fromiers In Rare Earth Scicnce and Application. Vol. 1, 1985, pp. 134-138.
[2] H. Ma and Z. Ye, J. Organomet. Chem., 326 (1987) 369-374.
[3] Z. Ye, Y. Yu and H. Ma, Polyhedron, 7(12) (1988) 1095-1100.
[4] L. Yang and L. Dai, Organometallics, 8(5) (1989) 1129-1133.
[5] F. Shen, J. Hu, M. Xie, S. Wang and X. Huang, J. Organomet. Chem., 489 (1995) $\mathrm{C}_{6}-\mathrm{C}_{9}$.
[6] L. Shi, H. Ma, Y. Yu and Z. Ye, J. Organomet. Chem., 339 (1988) 277-282.
[7] Z. Ye, Y. Yu, S. Wang and X. Jin, J. Organomet. Chem., 448 (1993) 91-93.
[8] F. Shen, M. Xie, J. Hu, S. Wang and X. Huang, Polyhedron, I5 (7) (1996) 1151-1155.
[9] J.M. Birminhum and G. Wilkison. J. Am. Chem. Ser., 78 (1956) 42.
[10] C. Qian, C. Ye, H. Lu, Y. Li, J. Zhou and Y. Ge, J. Orgememet. Chem., 247 (1983) 161.
[11] W. Hinrichs, D. Melzer, M. Rehwoldt, W. Jahn and R.D. Fischer, J. Organomet. Chem., 25l (1983) 299-305
[12] W. Ke, J. Zhongsheng and C. Wengi, J. Chem. Socc., Chem. Commun., (1991) 680-681.

[^0]: ${ }^{\cdot}$ Corresponding author.

[^1]: ${ }^{3}$ Cent indicates the centrod of C(1) to (C).

[^2]: ${ }^{\mathbf{a}}$ Cent indicates the centroid of $\mathrm{C}(1)$ to $\mathrm{C}(5)$.

[^3]: Cent indicates the centrond CII to C(5).

